Inexact Matching of Large and Sparse Graphs Using Laplacian Eigenvectors
نویسندگان
چکیده
In this paper we propose an inexact spectral matching algorithm that embeds large graphs on a low-dimensional isometric space spanned by a set of eigenvectors of the graph Laplacian. Given two sets of eigenvectors that correspond to the smallest non-null eigenvalues of the Laplacian matrices of two graphs, we project each graph onto its eigenenvectors. We estimate the histograms of these one-dimensional graph projections (eigenvector histograms) and we show that these histograms are well suited for selecting a subset of significant eigenvectors, for ordering them, for solving the sign-ambiguity of eigenvector computation, and for aligning two embeddings. This results in an inexact graph matching solution that can be improved using a rigid point registration algorithm. We apply the proposed methodology to match surfaces represented by meshes.
منابع مشابه
Towards Scalable Spectral Clustering via Spectrum-Preserving Sparsification
The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original gr...
متن کاملGraph matching and clustering using spectral partitions
Although inexact graph-matching is a problem of potentially exponential complexity, the problem may be simplified by decomposing the graphs to be matched into smaller subgraphs. If this is done, then the process may cast into a hierarchical framework and hence rendered suitable for parallel computation. In this paper we describe a spectral method which can be used to partition graphs into nonov...
متن کاملInvertibility of graph translation and support of Laplacian Fiedler vectors
The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors ar...
متن کاملSpectral Simplification of Graphs
Although inexact graph-matching is a problem of potentially exponential complexity, the problem may be simplified by decomposing the graphs to be matched into smaller subgraphs. If this is done, then the process may cast into a hierarchical framework and hence rendered suitable for parallel computation. In this paper we describe a spectral method which can be used to partition graphs into non-o...
متن کاملPartitioning Sparse Graphs using the Second Eigenvector of their Graph Laplacian
Partitioning a graph into three pieces, with two of them large and connected, and the third a small “separator” set, is useful for improving the performance of a number of combinatorial algorithms. This is done using the second eigenvector of a matrix defined solely in terms of the incidence matrix, called the graph Laplacian. For sparse graphs, the eigenvector can be efficiently computed using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009